Definition An indeterminate form of the type $\frac{0}{0}$ is a limit of a quotient where both numerator and denominator approach 0.

Example

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \qquad \qquad \lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} \qquad \qquad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

Definition An indeterminate form of the type $\frac{\infty}{\infty}$ is a limit of a quotient $\frac{f(x)}{g(x)}$ where $f(x) \to \infty$ or $-\infty$ and $g(x) \to \infty$ or $-\infty$.

Example

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} \qquad \qquad \lim_{x \to 0^+} \frac{x^{-1}}{\ln x}.$$

L'Hospital's Rule Suppose lim stands for any one of

 $\lim_{x \to a} \lim_{x \to a^+} \lim_{x \to a^-} \lim_{x \to \infty} \lim_{x \to \infty} \lim_{x \to -\infty}$ and $\frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. If $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ is a finite number L or is $\pm \infty$, then

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

(Assuming that f(x) and g(x) are both differentiable in some open interval around *a* or ∞ (as appropriate) except possible at *a*, and that $g'(x) \neq 0$ in that interval).

$$\lim_{x\to 0}\frac{e^x-1}{\sin x}$$

Since this is an indeterminate form of type ⁰/₀, we can apply L'Hospital's rule.

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \stackrel{=}{(L' Hosp.)} \lim_{x \to 0} \frac{e^x}{\cos x} \stackrel{=}{(Eval.)} 1$$

Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x\to\infty}\frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type ⁰/₀, we can apply L'Hospital's rule.
- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{1/e^x} = \lim_{x \to \infty} \frac{e^x}{x^2}$$

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2x}$$

• As $x \to \infty$, we have $e^x \to \infty$ and therefore $\lim_{x \to \infty} \frac{e^x}{2} = \infty$.

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule. ($\cos x$ and $x - \frac{\pi}{2}$ are both differentiable everywhere and $g'(x) \neq 0$ where $g(x) = x - \pi/2$).

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} \stackrel{=}{(L' Hosp.)} \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{1} \stackrel{=}{(Eval.)} -1$$

$$\lim_{x\to\infty}\frac{x^2+2x+1}{e^x}$$

Since this is an indeterminate form of type ∞/∞, we can apply L'Hospital's rule.

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} = \lim_{x \to \infty} \frac{2x + 2}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}$$

 \blacktriangleright As $x\to\infty,$ we have $e^x\to\infty$ and therefore $\lim_{x\to\infty}\frac{2}{e^x}=0$.

$$\lim_{x\to 0^+}\frac{x^{-1}}{\ln(x)}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

$$\lim_{x \to 0^+} \frac{x^{-1}}{\ln(x)} = \lim_{x \to 0^+} \frac{-x^{-2}}{1/x} = \lim_{x \to 0^+} \frac{-1/x^2}{1/x} = \lim_{x \to 0^+} \frac{-1}{x} = -\infty$$

Definition $\lim f(x)g(x)$ is an indeterminate form of the type $0 \cdot \infty$ if

$$\lim f(x) = 0$$
 and $\lim g(x) = \pm \infty$.

Example $\lim_{x\to\infty} x \tan(1/x)$

We can convert the above indeterminate form to an indeterminate form of type $\frac{\theta}{2}$ by writing

$$f(x)g(x) = \frac{f(x)}{1/g(x)}$$

or to an indeterminate form of the type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x)=\frac{g(x)}{1/f(x)}.$$

We them apply L'Hospital's rule to the limit.

Example of an Indeterminate form of type $0 \cdot \infty$.

Example $\lim_{x\to\infty} x \tan(1/x)$

►

We can convert the above indeterminate form to an indeterminate form of type ⁰/₀ by writing

$$f(x)g(x)=\frac{g(x)}{1/f(x)}.$$

$$\lim_{x\to\infty} x \tan(1/x) = \lim_{x\to\infty} \frac{\tan(1/x)}{1/x}$$

We then apply L'Hospital's rule to the limit.

$$\lim_{x \to \infty} \frac{\tan(1/x)}{1/x} = \lim_{x \to \infty} \frac{(-1/x^2)\sec^2(1/x)}{(-1/x^2)} = \lim_{x \to \infty} \sec^2(1/x)$$
$$= \lim_{x \to \infty} \frac{1}{\cos^2(1/x)} = 1$$

Indeterminate forms of type 0^0 , ∞^0 , 1^∞ .

Туре	Limit		
00	$\lim [f(x)]^{g(x)}$	$\lim f(x) = 0$	$\lim g(x) = 0$
∞^0	$\lim [f(x)]^{g(x)}$	$\lim f(x) = \infty$	$\lim g(x) = 0$
1^{∞}	$\lim [f(x)]^{g(x)}$	lim f(x) = 1	$\lim g(x) = \infty$

Example
$$\lim_{x\to 0} (1+x^2)^{\frac{1}{x}}$$
.

Method

- Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.
- ► Use L'Hospital to find lim g(x) ln[f(x)] = α. (α might be finite or ±∞ here.)
- Then lim f(x)^{g(x)} = lim e^{ln[f(x)]^{g(x)}} = e^α since e^x is a continuous function. (where e[∞] should be interpreted as ∞ and e^{-∞} should be interpreted as 0.)

Example of an Indeterminate form of type 1^{∞} .

Example
$$\lim_{x\to 0} (1+x^2)^{\frac{1}{x}}$$
.

Method

- ► Look at lim $\ln[f(x)]^{g(x)} = \lim_{x \to 0} g(x) \ln[f(x)]$: Look at $\lim_{x \to 0} \ln[1 + x^2]^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \ln[1 + x^2]$
- Use L'Hospital to find $\lim g(x) \ln[f(x)] = \alpha$.

$$\lim_{x \to 0} \frac{1}{x} \ln[1+x^2] = \lim_{x \to 0} \frac{\ln[1+x^2]}{x} \quad = \lim_{x \to 0} \frac{2x/[1+x^2]}{1} = \mathbf{0}(=\alpha).$$

• Then
$$\lim f(x)^{g(x)} = \lim e^{\ln[f(x)]^{g(x)}} = e^{\lim \ln[f(x)]^{g(x)}} = e^{\alpha}$$

$$\lim_{x \to 0} (1+x^2)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln[(1+x^2)^{\frac{1}{x}}]} = e^{\lim_{x \to 0} \ln[(1+x^2)^{\frac{1}{x}}]} = e^0 = 1.$$

Indeterminate forms of type $\infty - \infty$.

Indeterminate Forms of the type $\infty - \infty$ occur when we encounter a limit of the form lim(f(x) - g(x)) where $lim f(x) = lim g(x) = \infty$ or $lim f(x) = lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example
$$\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x}$$

 $\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x} = \lim_{x\to 0^+} \frac{\sin x - x}{x \sin x}$
 $\lim_{x\to 0^+} \frac{\sin x - x}{x \sin x} = \lim_{x\to 0^+} \frac{\cos x - 1}{\sin x + x \cos x}$
 $\lim_{x\to 0^+} \frac{\sin x - x}{x \sin x} = \lim_{x\to 0^+} \frac{\cos x - 1}{\sin x + x \cos x}$

$$\frac{-}{(L'Hosp.)} = \lim_{x \to 0^+} \frac{-\sin x}{\cos x + (\cos x - x \sin x)} = \frac{0}{2} = 0$$